95 research outputs found

    Disturbance Observer

    Full text link
    Disturbance observer is an inner-loop output-feedback controller whose role is to reject external disturbances and to make the outer-loop baseline controller robust against plant's uncertainties. Therefore, the closed-loop system with the DOB approximates the nominal closed-loop by the baseline controller and the nominal plant model with no disturbances. This article presents how the disturbance observer works under what conditions, and how one can design a disturbance observer to guarantee robust stability and to recover the nominal performance not only in the steady-state but also for the transient response under large uncertainty and disturbance

    Sensitivity analysis of circadian entrainment in the space of phase response curves

    Full text link
    Sensitivity analysis is a classical and fundamental tool to evaluate the role of a given parameter in a given system characteristic. Because the phase response curve is a fundamental input--output characteristic of oscillators, we developed a sensitivity analysis for oscillator models in the space of phase response curves. The proposed tool can be applied to high-dimensional oscillator models without facing the curse of dimensionality obstacle associated with numerical exploration of the parameter space. Application of this tool to a state-of-the-art model of circadian rhythms suggests that it can be useful and instrumental to biological investigations.Comment: 22 pages, 8 figures. Correction of a mistake in Definition 2.1. arXiv admin note: text overlap with arXiv:1206.414

    Nonlinear dynamics and chaos in an optomechanical beam

    Get PDF
    [EN] Optical nonlinearities, such as thermo-optic mechanisms and free-carrier dispersion, are often considered unwelcome effects in silicon-based resonators and, more specifically, optomechanical cavities, since they affect, for instance, the relative detuning between an optical resonance and the excitation laser. Here, we exploit these nonlinearities and their intercoupling with the mechanical degrees of freedom of a silicon optomechanical nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser we demonstrate accurate control to activate two-and four-dimensional limit cycles, a period-doubling route and a six-dimensional chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between two-and four-dimensional limit cycles, between different coherent mechanical states and between four-dimensional limit cycles and chaos. Our findings open new routes towards exploiting silicon-based optomechanical photonic crystals as a versatile building block to be used in neurocomputational networks and for chaos-based applications.This work was supported by the European Comission project PHENOMEN (H2020-EU-713450), the Spanish Severo Ochoa Excellence program and the MINECO project PHENTOM (FIS2015-70862-P). DNU, PDG and MFC gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a Beatriu de Pinos postdoctoral fellowship (BP-DGR 2015 (B) and a Severo Ochoa studentship, respectively. We would like to acknowledge Jose C. Sabina de Lis, J.M. Plata Suarez, A. Trifonova and C. Masoller for fruitful discussions.Navarro-Urrios, D.; Capuj, NE.; Colombano, MF.; García, PD.; Sledzinska, M.; Alzina, F.; Griol Barres, A.... (2017). Nonlinear dynamics and chaos in an optomechanical beam. Nature Communications. 8. https://doi.org/10.1038/ncomms14965S8Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press (2014).Lorenz, E. N. Deterministic nonperiodic ow. J. Atmos. Sci. 20, 130–141 (1963).Sparrow, C. The Lorenz Attractor: Bifurcations, Chaos and Strange Attractors Springer (1982).Aspelmeyer, M., Kippenberg, T. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).Kippenberg, T., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).Marquardt, F., Harris, J. G. E. & Girvin, S. M. Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006).Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal. Phys. Rev. Lett. 115, 233601 (2015).Metzger, C. et al. Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101, 133903 (2008).Bakemeier, L., Alvermann, A. & Fehske, H. Route to chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015).Sciamanna, M. & Shore, K. A. Physics and applications of laser diode chaos. Nat. Photon. 9, 151–162 (2015).Williams, C. R. et al. Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett. 110, 064104 (2013).Sciamanna, M. Optomechanics: vibrations copying optical chaos. Nat. Photon. 10, 366–368 (2016).Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).Monifi, F. et al. Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10, 399–405 (2016).Wu, J. et al. Dynamical chaos in chip-scale optomechanical oscillators. Preprint at https://arxiv.org/abs/1608.05071 (2016).Navarro-Urrios, D., Tredicucci, A. & Sotomayor-Torres, C. M. Coherent phonon generation in optomechanical crystals. SPIE Newsroom, doi:10.1117/2.1201507.006036 (2015).Navarro-Urrios, D. et al. A self-stabilized coherent phonon source driven by optical forces. Sci. Rep. 5, 15733 (2015).Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006).Navarro-Urrios, D. et al. Self-sustained coherent phonon generation in optomechanical cavities. J. Opt. 18, 094006 (2016).Kemiktarak, U., Durand, M., Metcalfe, M. & Lawall, J. Mode competition and anomalous cooling in a multimode phonon laser. Phys. Rev. Lett. 113, 030802 (2014).Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).Sprott, J. C. Chaos and Time-Series Analysis Vol. 69, Citeseer (2003).Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).Hoppensteadt, F. C. & Izhikevich, E. M. Synchronization of MEMS resonators and mechanical neurocomputing. IEEE Trans. Circuits Syst. I, Reg. Papers 48, 133–138 (2001).Pennec, Y. et al. Band gaps and cavity modes in dual phononic and photonic strip waveguides. AIP Adv. 1, 041901 (2011).Gomis-Bresco, J. et al. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun. 5, 4452 (2014).Johnson, S. G. et al. Perturbation theory for Maxwells equations with shifting material boundaries. Phys. Rev. E 65, 066611 (2002).Chan, J., Safavi-Naeini, A. H., Hill, J. T., Meenehan, S. & Painter, O. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett. 101, 081115 (2012).Pennec, Y. et al. Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics 3, 413–440 (2014)

    On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity

    Get PDF
    In the absence of sensory stimulation, neocortical circuits display complex patterns of neural activity. These patterns are thought to reflect relevant properties of the network, including anatomical features like its modularity. It is also assumed that the synaptic connections of the network constrain the repertoire of emergent, spontaneous patterns. Although the link between network architecture and network activity has been extensively investigated in the last few years from different perspectives, our understanding of the relationship between the network connectivity and the structure of its spontaneous activity is still incomplete. Using a general mathematical model of neural dynamics we have studied the link between spontaneous activity and the underlying network architecture. In particular, here we show mathematically how the synaptic connections between neurons determine the repertoire of spatial patterns displayed in the spontaneous activity. To test our theoretical result, we have also used the model to simulate spontaneous activity of a neural network, whose architecture is inspired by the patchy organization of horizontal connections between cortical columns in the neocortex of primates and other mammals. The dominant spatial patterns of the spontaneous activity, calculated as its principal components, coincide remarkably well with those patterns predicted from the network connectivity using our theory. The equivalence between the concept of dominant pattern and the concept of attractor of the network dynamics is also demonstrated. This in turn suggests new ways of investigating encoding and storage capabilities of neural networks

    Limitations of perturbative techniques in the analysis of rhythms and oscillations

    Get PDF
    Perturbation theory is an important tool in the analysis of oscillators and their response to external stimuli. It is predicated on the assumption that the perturbations in question are “sufficiently weak”, an assumption that is not always valid when perturbative methods are applied. In this paper, we identify a number of concrete dynamical scenarios in which a standard perturbative technique, based on the infinitesimal phase response curve (PRC), is shown to give different predictions than the full model. Shear-induced chaos, i.e., chaotic behavior that results from the amplification of small perturbations by underlying shear, is missed entirely by the PRC. We show also that the presence of “sticky” phase–space structures tend to cause perturbative techniques to overestimate the frequencies and regularity of the oscillations. The phenomena we describe can all be observed in a simple 2D neuron model, which we choose for illustration as the PRC is widely used in mathematical neuroscience

    Transient Responses to Rapid Changes in Mean and Variance in Spiking Models

    Get PDF
    The mean input and variance of the total synaptic input to a neuron can vary independently, suggesting two distinct information channels. Here we examine the impact of rapidly varying signals, delivered via these two information conduits, on the temporal dynamics of neuronal firing rate responses. We examine the responses of model neurons to step functions in either the mean or the variance of the input current. Our results show that the temporal dynamics governing response onset depends on the choice of model. Specifically, the existence of a hard threshold introduces an instantaneous component into the response onset of a leaky-integrate-and-fire model that is not present in other models studied here. Other response features, for example a decaying oscillatory approach to a new steady-state firing rate, appear to be more universal among neuronal models. The decay time constant of this approach is a power-law function of noise magnitude over a wide range of input parameters. Understanding how specific model properties underlie these response features is important for understanding how neurons will respond to rapidly varying signals, as the temporal dynamics of the response onset and response decay to new steady-state determine what range of signal frequencies a population of neurons can respond to and faithfully encode

    Anapole nanolasers for mode-locking and ultrafast pulse generation

    Get PDF
    Nanophotonics is a rapidly developing field of research with many suggestions for a design of nanoantennas, sensors and miniature metadevices. Despite many proposals for passive nanophotonic devices, the efficient coupling of light to nanoscale optical structures remains a major challenge. In this article, we propose a nanoscale laser based on a tightly confined anapole mode. By harnessing the non-radiating nature of the anapole state, we show how to engineer nanolasers based on InGaAs nanodisks as on-chip sources with unique optical properties. Leveraging on the near-field character of anapole modes, we demonstrate a spontaneously polarized nanolaser able to couple light into waveguide channels with four orders of magnitude intensity than classical nanolasers, as well as the generation of ultrafast (of 100 fs) pulses via spontaneous mode locking of several anapoles. Anapole nanolasers offer an attractive platform for monolithically integrated, silicon photonics sources for advanced and efficient nanoscale circuitry

    Correlations in spiking neuronal networks with distance dependent connections

    Get PDF
    Can the topology of a recurrent spiking network be inferred from observed activity dynamics? Which statistical parameters of network connectivity can be extracted from firing rates, correlations and related measurable quantities? To approach these questions, we analyze distance dependent correlations of the activity in small-world networks of neurons with current-based synapses derived from a simple ring topology. We find that in particular the distribution of correlation coefficients of subthreshold activity can tell apart random networks from networks with distance dependent connectivity. Such distributions can be estimated by sampling from random pairs. We also demonstrate the crucial role of the weight distribution, most notably the compliance with Dales principle, for the activity dynamics in recurrent networks of different types

    How to Achieve Fast Entrainment? The Timescale to Synchronization

    Get PDF
    Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker
    corecore